Network Flow - Yousef's Notes
Network Flow

Network Flow

A network consists of a set of points called nodes with lines called branches.

#Rules

  • Total flow into the network is equal to total flow out of the network.
  • Total flow into the node is equal to the total flow out of the node.

#Example 1

Find the general flow pattern of the network shown in the figure. Assuming that the flows are all non-negative. Maximum value for $x_3$?

INTERSECTION FLOW IN FLOW OUT
A $x_1 + x_3$ 20
B $x_2$ $x_3 + x_4$
C 80 $x_1 + x_2$
Total Flow 80 $20 + x_4$

#Equations

  1. $x_1 + x_3 = 20$
  2. $x_2 = x_3 + x_4$
  3. $80 = x_1 + x_2$
  4. $80 = x_4 + 20$

#Rearranged

  1. $x_1 + x_3 = 20$
  2. $x_2 - x_3 - x_4 = 0$
  3. $x_1 + x_2 = 80$
  4. $x_4 = 60$

#Matrix form

$$ \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 20 \\ 0 \\ 80 \\ 60 \end{bmatrix} $$

#Augmented Matrix

$$ \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 20 \\ 0 \\ 80 \\ 60 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & | & 20 \\ 0 & 1 & -1 & -1 & | & 0 \\ 1 & 1 & 0 & 0 & | & 80 \\ 0 & 0 & 0 & 1 & | & 60 \end{bmatrix} $$

#Apply RREF

$$ \begin{bmatrix} 1 & 0 & 1 & 0 & | & 20 \\ 0 & 1 & -1 & 0 & | & 60 \\ 0 & 0 & 0 & 1 & | & 60 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} $$

#From the RREF matrix, the solutions are

  • $x_1 = 20 - x_3$
  • $x_2 = 60 + x_3$
  • $x_3$ is free
  • $x_4 = 60$

#Constraints

  • $x_1 = 20 - x_3 \geq 0 \Rightarrow x_3 \leq 20$

#Example 2 (video)

put video here.