A network consists of a set of points called nodes with lines called branches.
#Rules
- Total flow into the network is equal to total flow out of the network.
- Total flow into the node is equal to the total flow out of the node.
#Example 1
Find the general flow pattern of the network shown in the figure. Assuming that the flows are all non-negative. Maximum value for $x_3$?
INTERSECTION | FLOW IN | FLOW OUT |
---|---|---|
A | $x_1 + x_3$ | 20 |
B | $x_2$ | $x_3 + x_4$ |
C | 80 | $x_1 + x_2$ |
Total Flow | 80 | $20 + x_4$ |
#Equations
- $x_1 + x_3 = 20$
- $x_2 = x_3 + x_4$
- $80 = x_1 + x_2$
- $80 = x_4 + 20$
#Rearranged
- $x_1 + x_3 = 20$
- $x_2 - x_3 - x_4 = 0$
- $x_1 + x_2 = 80$
- $x_4 = 60$
#Matrix form
$$ \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 20 \\ 0 \\ 80 \\ 60 \end{bmatrix} $$#Augmented Matrix
$$ \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 20 \\ 0 \\ 80 \\ 60 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & | & 20 \\ 0 & 1 & -1 & -1 & | & 0 \\ 1 & 1 & 0 & 0 & | & 80 \\ 0 & 0 & 0 & 1 & | & 60 \end{bmatrix} $$#Apply RREF
$$ \begin{bmatrix} 1 & 0 & 1 & 0 & | & 20 \\ 0 & 1 & -1 & 0 & | & 60 \\ 0 & 0 & 0 & 1 & | & 60 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} $$#From the RREF matrix, the solutions are
- $x_1 = 20 - x_3$
- $x_2 = 60 + x_3$
- $x_3$ is free
- $x_4 = 60$
#Constraints
- $x_1 = 20 - x_3 \geq 0 \Rightarrow x_3 \leq 20$
#Example 2 (video)
put video here.