$a_{ij}$ is the Matrix element in row $i$ and column $j$
#Types
- 1 Norm $|A|1 = \max{1 \leq j \leq n} \left( \sum_{i=1}^{m} |a_{ij}| \right)$ - Maximum of the sum of absolute column elements.
- Infinite Norm $|A|{\infty} = \max{1 \leq i \leq m} \left( \sum_{j=1}^{n} |a_{ij}| \right)$ - Maximum of the sum of absolute row elements.
- Frobenius Norm $|A|F = \sqrt{\sum{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2}$ Square root of the sum of the square of all elements.